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The relationship between the equations used in the atomic pair distribution

function (PDF) method and those commonly used in small-angle-scattering

(SAS) analyses is explicitly shown. The origin of the sloping baseline,�4�r�0, in

PDFs of bulk materials is identified as originating from the SAS intensity that is

neglected in PDF measurements. The nonlinear baseline in nanoparticles has

the same origin, and contains information about the shape and size of the

nanoparticles.

1. Introduction

The atomic pair distribution function (PDF) analysis of X-ray

and neutron powder diffraction is growing in popularity with

the advent of nanoscience and nanotechnology. The technique

is more than 70 years old (Debye & Menke, 1930; Warren,

1990; Egami & Billinge, 2003) and was originally applied

almost exclusively to the study of glass and amorphous

structures (Warren, 1934; Warren et al., 1936; Franklin, 1950,

1951; Wright, 1998). However, the approach is proving

powerful in solving structure on the nanoscale (Billinge &

Kanatzidis, 2004), where traditional crystallographic methods

break down (Billinge & Levin, 2007). In particular, the study

of the structure of discrete nanoparticles using the PDF

method has recently become a focus (McKenzie et al., 1992;

Zhang et al., 2003; Gateshki et al., 2004; Gilbert et al., 2004;

Page et al., 2004; Korsunskiy & Neder, 2005; Petkov et al., 2005;

Bedford et al., 2007; Ehm et al., 2007; Masadeh et al., 2007;

Pradhan et al., 2007). The convergence of this new need with

the availability of powerful sources of high-energy synchro-

tron X-rays and spallation neutrons and fast computing is

greatly expanding the power and applicability of the method.

The PDF, GðrÞ, is defined both as a function of the real-

space pair density, �ðrÞ, and the reciprocal-space scattering,

FðQÞ ¼ Q½SðQÞ � 1�, as follows:

GðrÞ ¼ ð2=�Þ
R1
0

FðQÞ sinðQrÞ dQ ð1Þ

and

GðrÞ ¼ 4�r½�ðrÞ � �0�; ð2Þ

where �0 is the number density of the material (Kaplow et al.,

1965, 1968; Klug & Alexander, 1974; Johnson et al., 1982;

Soper & Silver, 1982; Korsunskii, 1985; Wright, 1985; Nanao et

al., 1987; Warren, 1990; Egami et al., 1991; Billinge et al., 1994;

Petkov et al., 1998; Petkov & Danev, 1998; Keen, 2001; Tucker

et al., 2001; Egami & Billinge, 2003; Soper, 2007; Neder et al.,

2007; Billinge, 2008; Dinnebier & Billinge, 2008; Gilbert,

2008). Equation (2) in this form works well for bulk materials,

but the negatively sloping baseline, �4�r�0, is no longer valid

when the PDF is calculated from models of finite-sized objects

such as discrete nanoparticles (Korsunskiy & Neder, 2005).

Motivated by the need for a rigorous definition of the form of

this baseline we rederive these equations here. We show the

correct form of equation (2) in a number of cases of practical

interest such as discrete nanoparticles and nanoparticle PDFs

calculated from bulk models. The important distinction is

provided by the small-angle-scattering (SAS) intensity and we

explicitly relate the commonly used PDF functions with

commonly used results from SAS. We also show that the

widely used pair of definitions for the PDF above are actually

incompatible with each other and that the definition given in

equation (1) does not give rise to equation (2) but rather to

RðrÞ=r, where RðrÞ is the radial distribution function. This

work therefore resolves a long-standing ambiguity in the PDF

literature.

Compared to the PDF of a bulk sample (Levashov et al.,

2007), the PDF of a nanoparticle is attenuated with increasing

r by a function that is related to the form of the nanoparticle

(Guinier, 1963). For simple shapes, such as spheroids, spherical

shells, rods and discs, this nanoparticle form factor can be

computed analytically (Rayleigh, 1914; Glatter & Kratky,

1982; Thorpe & Lei, 2007; Gilbert, 2008) and integral equa-

tions exist for more complex shapes (Kodama et al., 2006).

This lends itself to a simple nanoparticle-modeling procedure

where the nanoparticle PDF is calculated from the PDF of a

bulk-phase analogue by multiplying by the assumed nano-

particle form factor (Guinier, 1963; Qiu et al., 2005; Masadeh

et al., 2007). The approach is successful for extracting precise

quantitative structural information about the crystalline core



of nanoparticles, including defects and size-dependent bond

lengths (Masadeh et al., 2007), and this functionality has been

incorporated in the latest version of the PDF modeling soft-

ware PDFgui (Farrow et al., 2007). However, the method is not

applicable when the nanoparticle structure has no bulk-phase

analogue. This is the case in general, for example in nano-

particles with surface modifications (Zhang et al., 2003) and

inhomogeneous compositions such as core–shell nanoparticles

(Liz-Marzán et al., 1996). In these cases, models of discrete

nanoparticles must be applied. As we discuss below, this

results in an ambiguity about the precise form of the measured

correlation function, and therefore how to calculate it.

Currently, this is dealt with quite successfully in an ad hoc way,

as for example in Korsunskiy & Neder (2005), Neder &

Korsunskii (2005), Korsunskiy et al. (2007) and Neder et al.

(2007). This paper presents a rigorous definition of the

form of the baseline in terms of the nanoparticle form

factor.

In x2 we rederive the equations giving rise to the PDF to

show the precise relationship between the measured correla-

tion function in an X-ray or neutron total-scattering experi-

ment and the underlying model. In x3 we make explicit the

link between the commonly used PDF and small-angle scat-

tering equations. This has implications for calculating PDFs

from discrete nanoparticle models for quantitative compar-

ison with data, which are discussed in x4. In x5 we discuss the

conditions under which the PDF can be calculated in real

space. x6 presents a brief summary.

2. Derivation of the PDF equations

To understand the precise relationship between the commonly

used PDF equations, nanoparticle structures and small-angle

scattering, we rederive the PDF equations from the beginning

since subtle details of the derivation that are often overlooked

have a significant impact on the discussion presented here.

Furthermore, the full derivation is not reproduced even in

many textbooks on the subject (Warren, 1990; Klug & Alex-

ander, 1974; Egami & Billinge, 2003; Dinnebier & Billinge,

2008) and so these subtleties are not widely appreciated in the

community.

We start from the scattering amplitude from a set of i atoms

at points ri in the kinematical limit:

 ðQÞ ¼
P

i

fiðQÞ expðiQ � riÞ

¼
P

i

 i: ð3Þ

If the scattering from these atoms were totally incoherent the

total intensity would be the sum of the intensities from each

atom,

Iinc ¼
P

i

 �i  i

¼
P

i

f �i ðQÞfiðQÞ

¼
P
�

N�f �� ðQÞf�ðQÞ

¼ N
P
�

c�f �� ðQÞf�ðQÞ

¼ Nhf 2i; ð4Þ

where the sum over � is now over the different species of

atoms in the sample with N being the total number of atoms,

N� being the number of atoms of type � and where the

concentration of species � is c� ¼ N�=N. The asterisk indicates

the complex conjugate. Similarly, we can define the sample-

averaged scattering power, hf i ¼
P

� c�f� and

hf i2 ¼ ð1=N2
Þ
P

ij

f �j fi

¼
P
��

c�c� f �� f�: ð5Þ

Here we have dropped the Q dependence of the atomic

scattering factors to simplify the notation, but the f’s are

understood to retain their Q dependence.

The full coherent scattering intensity is given by  � , which

is

Ic ¼
P

i

P
j

f �j fi exp½iQ � ðri � rjÞ�

¼
P
i;j

f �j fi expðiQ � rijÞ: ð6Þ

We can separate out the self-scattering, i = j, for which rij ¼ 0:

Ic ¼
P

i

f �i fi þ
P
i6¼j

f �j fi expðiQ � rijÞ

¼ Nhf 2i þ
P
i6¼j

f �j fi expðiQ � rijÞ; ð7Þ

where we have used equation (4), resulting in an expression

for the discrete scattering intensity for i 6¼ j as

Id ¼ Ic � Nhf 2i

¼
P
i 6¼j

f �j fi expðiQ � rijÞ: ð8Þ

We want an expression for the total scattering structure

function, S(Q), which is defined as Ic=ðNhf i
2
Þ �

hðf � hf iÞ
2
i=hf i2. The second term in this definition is the Laue

monotonic diffuse scattering that comes about because of the

imperfect cancellation of intensity at the destructive inter-

ference condition when atomic sites are occupied by atoms of

different scattering strength. It results in a monotonic inco-

herent background even in the case of perfectly coherent

scattering.

To get S(Q) from equation (7) we therefore must normalize

by the total number of scatterers, N,

Ic=N ¼ hf 2i þ ð1=NÞ
P
i6¼j

f �j fi expðiQ � rijÞ: ð9Þ

Subtracting the normalized self-scattering term to get

Acta Cryst. (2009). A65, 232–239 Farrow and Billinge � Relationship between the PDF and SAS 233

research papers



ðIc=NÞ � hf 2
i ¼ ð1=NÞ

P
i6¼j

f �j fi expðiQ � rijÞ ð10Þ

and then normalizing by hf i2, we obtain

Ic=ðNhf i
2
Þ � hf 2

i=hf i2 ¼ ½1=ðNhf i2Þ�
P
i 6¼j

f �j fi expðiQ � rijÞ: ð11Þ

Thus,

SðQÞ � 1 ¼ Ic=ðNhf i
2
Þ � hf 2i=hf i2

¼ Id=ðNhf i
2
Þ

¼ 1=ðNhf i2Þ
P
i 6¼j

f �j fi expðiQ � rijÞ: ð12Þ

This expression yields precisely SðQÞ � 1 in terms of scattering

from atoms in our sample.

For an isotropic sample, e.g. a powder of crystals or nano-

particles, we assume there to be a crystallite with every

orientation with equal probability and we can take an orien-

tational average. Place the Q along z so that we can express

Q � rij ¼ Qrij cos �. Then the orientational averaging means

that � takes all values with equal probability. The sample-

averaged intensity for a pair of atoms will therefore be

expðiQ � rijÞ ¼

R 2�

0 d’
R �

0 d� expðiQrij cos �Þr2
ij sin �R 2�

0 d’
R �

0 d� r2
ij sin �

¼
�2�r2

ij

�
expðiQrij cos �Þ

��
0

4�r2
ijiQrij

¼

�
expðiQrijÞ � expð�iQrijÞ

�
2iQrij

¼
sinðQrijÞ

Qrij

: ð13Þ

Using this in equation (6) gives the average coherent scat-

tering intensity, as expressed originally by Debye (1915). From

this we get the total scattering structure function for an

isotropic sample,

SðQÞ � 1 ¼ ½1=ðNhf i2Þ�
P

i 6¼j f �j fi½sinðQrijÞ=Qrij�: ð14Þ

Thus, the reduced total scattering structure function,

FðQÞ ¼ Q½SðQÞ � 1�, is

FðQÞ ¼ ½1=ðNhf i2Þ�
P
i6¼j

f �j fi½sinðQrijÞ=rij�: ð15Þ

For completeness we describe the removal of the Q

dependence of the X-ray form factors. This is a standard result

and this paragraph can be skipped without losing the thread of

the derivation. The form factors are assumed to be isotropic so

depend only on Q and not Q, which is a good approximation

for scattering from core electrons in particular. Write

f ðQÞ ¼ f ð0Þ~ff ðQÞ, where ~ff ðQÞ has value 1 at Q = 0 and contains

the Q dependence of the form factor and f ð0Þ ’ Z, where Z is

the atomic number that scales the form factor. The

Morningstar–Warren approximation (Warren et al., 1936) is

that the Q-dependent part of the form factors can be well

approximated by an average Q dependence, ~ff ðQÞ ¼

ð1=NspeciesÞ
P

� c� ~ff�ðQÞ. In this case the Q dependence, ~ff ðQÞ
2

,

comes out of the double sums in equation (15) on the top and

the bottom and cancels out. The f’s that remain are Q inde-

pendent, and are normally replaced by the atomic number

(modified by any anomalous scattering factors). The same

result holds for neutron scattering where the f’s are replaced

by coherent neutron scattering lengths, b. These have no Q

dependence and therefore the approximate method for

removing the Q dependence is not needed.

Now we want to consider the inverse Fourier transform of

FðQÞ. Because FðQÞ is an odd function, we use the sine-

Fourier transform,

f ðrÞ ¼ ð2=�Þ
R1
0

FðQÞ sinðQrÞ dQ: ð16Þ

We choose the 2=� prefactor so that the direct sine transform

has a prefactor of 1. This is precisely the definition of the PDF

in equation (1). From this we get

f ðrÞ ¼
2

�

Z1

0

1

Nhf i2

X
i6¼j

f �j fi

sinðQrijÞ

rij

sinðQrÞ dQ

¼
2

�Nhf i2

X
i6¼j

f �j fi

rij

Z1

0

sinðQrijÞ sinðQrÞ dQ

¼
1

Nhf i2

X
i6¼j

f �j fi

rij

½�ðr� rijÞ � �ðrþ rijÞ�

¼
1

rNhf i2

X
i6¼j

f �j fi ½�ðr� rijÞ � �ðrþ rijÞ�; ð17Þ

which, if we confine ourselves to the positive axis only, is

f ðrÞ ¼ ½1=ðrNhf i2Þ�
P
i 6¼j

f �j fi�ðr� rijÞ: ð18Þ

We can interpret f ðrÞ in terms of the radial distribution

function (RDF). The RDF, denoted RðrÞ, is defined for an

elemental system such that for an arbitrary atom i at the

origin, RiðrÞ dr gives the number of atoms in a shell of thick-

ness dr at a distance r from that atom and the total RDF is the

average of the partial RDFs over each atom taken at the

origin. Thus, the integral of the RDF between two bounds, a

and b, gives the number of atomic pairs per atom with

separation within those bounds, Nab. By inspection we see that

equation (18) yields this behavior if we multiply f ðrÞ by r. For a

solid with � atomic species we get

Rb
a

f ðrÞr dr ¼
Rb
a

½1=ðNhf i2Þ�
P
i6¼j

f �j fi�ðr� rijÞ dr

¼ ½1=ðNhf i2Þ�
P

i

P
j2S

f �j fi

¼ ½1=ðhf i2Þ�
P
�

c�f�
P
j2S

f �j ; ð19Þ

where S is the set of atoms with distance from atom i greater

than a and less than b. In the case of just one atomic species,

this reduces to
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Rb
a

f ðrÞr dr ¼ ðf 2=f 2
Þ
P
j2S

1

¼ Nab; ð20Þ

as required. Thus,

f ðrÞ ¼ RðrÞ=r

¼ 4�r�ðrÞ: ð21Þ

The second expression in equation (21) comes from the rela-

tionship between the RDF and the pair density. The pair

density is defined such that
R

dr d’ d� r2 sinð�Þ�ðrÞ ¼
R

RðrÞ dr,

so that 4�r2�ðrÞ ¼ RðrÞ.

We now see the slightly unexpected result that the

commonly used definition, equation (16), and our rederivation

of it, equation (21), are not equivalent. The definition in

equation (16) does not yield GðrÞ [equation (2)] and strictly

ð2=�Þ
R1

0 FðQÞ sinðQrÞ dQ ¼ RðrÞ=r 6¼ GðrÞ. However, we see

below that in practice it is GðrÞ and not RðrÞ that is indeed

obtained experimentally in most cases.

Finally, rearranging equation (21) we find

�ðrÞ ¼ f ðrÞ=4�r

¼ ½1=ð4�r2Nhf i2Þ�
P
i6¼j

f �j fi�ðr� rijÞ: ð22Þ

In reality, IcðQÞ is measured down to a minimum Q due to

the experimental setup. This means that in general the

forward-scattering contributions are lost. We will consider the

impact of this on the measured real-space function f ðrÞ. We

rewrite the expression for the experimental f ðrÞ as

f ðr; QminÞ ¼ ð2=�Þ
R1

Qmin

FðQÞ sinðQrÞ dQ

¼ 4�r�ðrÞ � ð2=�Þ
RQmin

0

FðQÞ sinðQrÞ dQ: ð23Þ

Of course, we have a finite Qmax as well, but this will be

disregarded during the following discussion, as the effects are

well understood (Toby & Egami, 1992).

3. Low-angle-scattering intensity

We will now consider a number of explicit examples to

understand how the missing forward scattering affects the

measured f ðr; QminÞ.

It is instructive to first consider the RDF of an infinite

scatterer of uniform density, �0. The intensity of such a system

is typically expressed as a delta function at Q = 0. We note that

this gives f ðrÞ ¼ 0 when used in equations (12) and (16), so we

must use a more rigorous description of the scattered intensity.

Since the scattering length is defined per atom, the scattering

amplitude of a volume element dr at position r is

 ¼ �0hf i expðiQ � rÞ dr. Then, for an infinite uniform scat-

terer, the intensity is given by

IcðQÞ ¼ �
2
0hf i

2
R R

exp½iQ � ðr� r0Þ� dr dr0; ð24Þ

where the integrals are over all space. Using this in equation

(12) and integrating over Q first in equation (16) gives

f ðrÞ ¼ 4�r�0, as expected. As a side note, using

IcðQÞ ¼ 2�2Nhf i2�0�ðQÞ=Q gives the correct result, but we

forgo this derivation for the one below, where we consider in

detail the general case of an arbitrary scatterer.

To evaluate the scattered intensity for an arbitrary scatterer

of uniform density we define a shape function sðrÞ such that

inside the shape s = 1 and outside the shape s = 0. For such a

material

IcðQÞ ¼ �
2
0hf i

2
R R

sðrÞsðr0Þ exp½iQ � ðr� r0Þ� dr dr0: ð25Þ

We redefine variables so that r00 ¼ r� r0, and dr00 ¼ dr, in

which case we have

IcðQÞ ¼ �
2
0hf i

2
R R

sðr0Þsðr0 þ r00Þ expðiQ � r00Þ dr0 dr00

¼ �2
0hf i

2
R

dr00 expðiQ � r00Þ
R

sðr0Þsðr0 þ r00Þ dr0: ð26Þ

The second integral is a self convolution, or autocorrelation, of

the shape function. Let us define

�0ðrÞ ¼ ð1=VÞ
R

sðr0Þsðr0 þ rÞ dr0; ð27Þ

where V ¼
R

sðrÞ dr is the volume defined by the shape func-

tion. This �0ðrÞ is the characteristic function of the shape

(Guinier et al., 1955), and has been called the nanoparticle

form factor in the PDF literature (Qiu et al., 2005; Kodama et

al., 2006; Masadeh et al., 2007). Defined as such, �0ðrÞ has the

following properties:

�0ð0Þ ¼ 1;R
�0ðrÞ dr ¼ V: ð28Þ

This definition, and a convenient dropping of the double

primes, gives

IcðQÞ ¼ �
2
0hf i

2V
R
�0ðrÞ expðiQ � rÞ dr: ð29Þ

In analogy with the discrete case we want to convert this to

SðQÞ � 1 ¼ ½Ic=ðNhf i
2
Þ� � ½hf 2i=hf i2�, and using the fact that

N ¼ �0V we get

SðQÞ � 1 ¼ ½1=ðNhf i2Þ��2
0hf i

2V
R
�0ðrÞ expðiQ � rÞ dr

� hf 2
i=hf i2

¼ �0

R
�0ðrÞ expðiQ � rÞ dr� hf 2i=hf i2: ð30Þ

The second term, hf 2i=hf i2, is very small compared to the first

term. It is order unity, where the first term scales as N ¼ �0V,

and can safely be ignored in most cases.

Now we want to take the orientational average. This must

be done with care as, in general, the orientation of the nano-

particle shape and the underlying structure are correlated. For

example, the morphology of the particles (plates or needles)

depends on easy growth directions of the underlying structure.

As discussed by Gilbert (2008), this means that the shape

function and the internal structure of the particle are not, in

general, separable and it is not correct to get the scattered

intensity by convolving the reciprocal-space intensity with the

Fourier transform of the characteristic function. Things are

greatly simplified in the case where the underlying structure,

or the nanoparticle shape, or both, are isotropic, or approxi-
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mately so. Then we can denote the angle-averaged char-

acteristic function as

�0ðrÞ ¼ �0ðrÞ ¼

R
d’
R

d� sinð�Þr2�0ðrÞR
d’
R

d� r2 sinð�Þ
: ð31Þ

Using this and equation (13) we get

SðQÞ � 1 ¼ �0

R1
0 dr

R 2�

0 d’
R �

0 d� �0ðrÞ expðiQ � rÞr2 sin �

¼ �0

R1
0 dr

R 2�

0 d’
R �

0 d� �0ðrÞ expðiQ � rÞr2 sin �

¼ �0

R1
0 dr

R 2�

0 d’
R �

0 d� �0ðrÞ½sinðQrÞ=ðQrÞ�r2 sin �

¼ �0

R1
0 �0ðrÞ½sinðQrÞ=ðQrÞ�4�r2 dr: ð32Þ

Since the particles have no preferred orientation in space, we

have broken the average of the product in the first line into the

product of the averages. This gives

FðQÞ ¼
R1
0

4��0r�0ðrÞ sinðQrÞ dr: ð33Þ

Noting that this is the direct sine-Fourier transform, we take

the inverse transform to get

f uðrÞ ¼ ð2=�Þ
R1
0

FðQÞ sinðQrÞ dQ

¼ 4��0r�0ðrÞ; ð34Þ

where the subscript u indicates that this result is for a solid of

uniform density distribution, �0.

Next we consider a macroscopic crystal. The difference in

FðQÞ is at higher Q where, instead of complete cancellation of

all the discrete intensity it appears at distinct reciprocal-lattice

points as sharp Bragg peaks. Importantly, in the region of Q

below the first Bragg peak, the distinct scattering is zero

except at very low Q, where the small-angle-scattering region

is reached. The small-angle-scattering intensity, Isas, from the

crystal is identical to that from the solid with uniform density:

Isas
u ¼ Isas

crystal. The small- and wide-angle-scattering regions are

well separated in Q and Isas decays to zero before Qmin is

reached in the crystal. Thus,

f sasðrÞ ¼ ð2=�Þ
RQmin

0

FðQÞ sinðQrÞ dQ

¼ f uðrÞ ð35Þ

and therefore

ð2=�Þ
RQmin

0

FðQÞ sinðQrÞ dQ ¼ 4��0r�0ðrÞ: ð36Þ

We are now in a position to understand in detail the nature

of the measured PDF f ðr; QminÞ. Substituting equation (36)

into equation (23) we get

f ðr; QminÞ ¼ 4�r�ðrÞ � 4�r�0�0ðrÞ: ð37Þ

This is similar to the definition of the PDF from equation (2),

except that �0ðrÞ appears in the sloping baseline term.

4. Calculating f(r; Qmin) from models

We can now consider the calculation of measured PDFs using

equation (37) at a number of interesting limits.

4.1. Calculating in real space for bulk crystals

In the case of bulk crystals, the region of interest in the PDF

is usually r� D, D being the smallest dimension of the crystal.

In this region, �0ðrÞ ’ 1. Thus,

f ðr; QminÞ ¼ GðrÞ

¼ 4�r½�bulkðrÞ � �0�; ð38Þ

which is the familiar definition of GðrÞ in equation (2). The

pair density function, �bulkðrÞ, is calculated from a model with

periodic boundary conditions (Billinge, 1998; Proffen & Bill-

inge, 1999), or from a box of atoms that is much larger in

extent than the range of r of interest (McGreevy & Pusztai,

1988), using equation (22). The average number density �0 is

given by the number of atoms per unit volume, which in the

case of crystals is the number of atoms in the unit cell divided

by the unit-cell volume.

Equation (22) can be modified to account for peak broad-

ening due to atomic vibrations and finite maximum Q. These

modifications are discussed elsewhere (Egami & Billinge,

2003).

4.2. Calculating in real space for nanoparticles modeled as
attenuated bulk crystals

In this case �bulkðrÞ is determined using a model of a bulk

structure as described in x4.1. The pair density, �ðrÞ, in equa-

tion (37) is the function for the nanoparticle, which is

approximated as �0ðrÞ�bulkðrÞ (Guinier, 1963). Thus

f ðr; QminÞ ¼ 4�r�0ðrÞ½�bulkðrÞ � �0�: ð39Þ

This approach has been implemented in the PDFgui modeling

software (Farrow et al., 2007) and used successfully on rather

well ordered CdSe nanocrystals (Masadeh et al., 2007). The

main shortcoming is that effects that cannot be incorporated

in the average structure, such as surface relaxations or core–

shell inhomogeneities, cannot be modeled.

If there is a distribution of nanoparticle sizes and shapes,

the characteristic function, �0ðrÞ, can be replaced with an

appropriately averaged characteristic function,

�ðrÞ ¼
R
�0ðr; R1;R2; . . .ÞpðR1;R2; . . .Þ dR1 dR2 . . . : ð40Þ

Here pðR1;R2; . . .Þ is the normalized distribution of nano-

particle shapes parameterized by R1; R2; . . .. For example, for

spherical nanoparticles of radius R, pðR1;R2; . . .Þ ¼ pðRÞ, the

distribution of nanoparticle radii. Finally, we replace equation

(39) with

f ðr; QminÞ ¼ 4�r�ðrÞ½�bulkðrÞ � �0�: ð41Þ

Great care should be taken to ensure that the result is unique

when refining a number of nanoparticle morphology para-

meters beyond one or two.
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4.3. Calculating as the Fourier transform of the properly
normalized Debye function

This approach has been successfully used by a number of

authors (Zhang et al., 2003; Cervellino et al., 2006). The FðQÞ

function is evaluated using equation (15) and then Fourier

transformed to obtain the desired real-space function. To

account for thermal and zero-point motion in reciprocal-space

calculations, equation (15) is replaced with a version that

includes Debye–Waller effects,

FðQÞ ¼
1

Nhf i2

X
i 6¼j

f �j fi expð�1
2�

2
ijQ

2Þ
sinðQrijÞ

rij

: ð42Þ

Here, �2
ij is the correlated broadening factor for the atom pair

(Proffen & Billinge, 1999; Thorpe et al., 2002; Jeong et al.,

2003).

As we show here, for a quantitative comparison with

measured data care must be taken with the Fourier transform

so that it is carried out over the same range of Q as the

experiment. The main drawback of the reciprocal-space

approach is that it can be very slow compared to direct real-

space calculation due to the long-range extent of the signal

from each pair. It is generally preferred for smaller systems.

However, due to recent algorithmic advances, the calculation

of the Debye equation for larger systems can be greatly

accelerated under certain circumstances (Cervellino et al.,

2006).

Using this method, the termination effects coming from the

finite Q range are implicity included provided the Fourier

transforms to obtain the model and data PDFs are terminated

with the same Qmin and Qmax values.

4.4. Calculating in real space from discrete nanoparticle
models

In this case, equation (37) is used directly, where �ðrÞ is

calculated from a finite model of the discrete nanoparticle

using equation (22). The difficulty arises in determining a

correct form for the baseline �4�r�0�0ðrÞ. Up until now, the

shape of the baseline has been approximated using expansions

of ad hoc mathematical functions (Korsunskiy & Neder, 2005;

Neder & Korsunskii, 2005; Korsunskiy et al., 2007; Neder et al.,

2007). This is successful at approximating the behavior of the

baseline. However, in this work we derive the explicit form of

the baseline shape in terms of the characteristic function of the

nanoparticle, the autocorrelation function of the nanoparticle

shape. This suggests a number of approaches to calculating the

PDF baseline in a more physical way.

If we have accurate small-angle-scattering data from the

samples, from equation (37) we see that we can compute the

PDF baseline from the measured SAS via a Fourier transform.

However, care must be exercised as the derivation assumes

that the sample is made up of discrete nanoparticles. In

general, clusters and aggregates of nanoparticles will form and

small-angle-scattering signals from these structures on

different length scales will be present and must be separated.

Also, scattering-density fluctuations of any sort in the sample

will affect the SAS signal, as discussed elsewhere (Cargill,

1971). None of these effects need be explicitly considered if

the SAS signal is not used in the PDF definition, as in equation

(37), although an alternative method is then required to

determine the baseline.

The inclusion of SAS data has the potential to add signifi-

cant value to any refinement of nanoparticle models from the

PDF. Both small- and large-angle scattering contain informa-

tion about the shape and size of nanoparticles, but this infor-

mation is decoupled from the internal nanoparticle structure

in the small-angle scattering. This same information is in the

PDF, but it can be obscured by structural features, such as

when the PDF prematurely attenuates due to a complex or

amorphous surface structure. In this case, the nanoparticle size

obtained from SAS will be larger than the apparent nano-

particle size obtained from the PDF, which reflects the size of

the coherent core structure. Even without the inclusion of SAS

data into PDF refinements, we can learn much from SAS

analysis techniques. PDF nanoparticle refinements usually

start with a simple model that includes atomic positions

restricted by a shape. Therefore, PDF analysis can benefit from

the various ab initio methods (Svergun & Stuhrmann, 1991;

Chacón et al., 1998) for determining the shape of a scatterer

from the SAS.

Without the use of the small-angle intensity for determining

�0ðrÞ, we can consider approaches to determining it self-

consistently from the model, since it is the autocorrelation of

the particle shape, which is directly available from the model

itself by determining a ‘shrink-wrapping’ of the atomistic

model. On the contrary, when the internal structure is well

known, but the size and shape distribution of nanoparticles is

not, then the characteristic function can be parameterized and

refined to obtain the approximate nanoparticle dimensions as

done by Masadeh et al. (2007).

5. The extent of small-angle scattering

We have considered the two asymptotic situations here of

including or excluding all the SAS. If the SAS is retained in the

intensity that is Fourier transformed, the resulting real-space

function obtained is 4�r�ðrÞ ¼ RðrÞ=r [equation (18)].

Excluding it all results in GðrÞ [equation (37)]. We now

consider the possibility that some, but not all, of the small-

angle scattering is included in the Fourier transform. This

might occur in the case of very small nanoparticles, for

example, when the SAS extends to wider angles. Here we

estimate the circumstances under which a significant amount

of small-angle intensity will appear in a wide-angle PDF

experiment for the case of a sphere of uniform density. The

scattering intensity is given by Rayleigh (1914),

IðQÞ / ½9=ðQRÞ
6
� sinðQRÞ �QR cosðQRÞ½ �

2; ð43Þ

where R is the radius of the sphere. By integrating this

equation from 0 to Qmin, and dividing by the total integrated

intensity, we get an expression for the proportion of small-
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angle intensity above Qmin for a given nanoparticle diameter

(Rayleigh, 1914):

iðxÞ ¼ 1� ½1=ð2�r5
Þ�½ð2x4

� x2
þ 3Þ cosð2xÞ

þ xðx2 þ 6Þ sinð2xÞ þ 4x5Sið2xÞ � ð5x2 þ 3Þ�: ð44Þ

Here x ¼ QminR and SiðxÞ represents the sine integral,

SiðxÞ ¼
R x

0 ½sinðx0Þ=x0� dx0. For a very small nanoparticle of

radius 5 Å, we see that ið5Þ< 0:01, corresponding to

Qmin ’ 1 Å�1, which is typical for a rapid-acquisition pair

distribution function (RAPDF) (Chupas et al., 2003) experi-

ment. Thus, for even quite small nanoparticles, practically all

small-angle intensity is below Qmin = 1 Å�1 and equation (37)

is appropriate. However, care should be taken not to extend

Qmin too low in Q in a measurement of a nanoparticulate

system.

In the few-atom limit, such as the case of discrete small

molecules, the small- and wide-angle scattering are not cleanly

separated. To produce a complete real-space signal, one can

approximate the small-angle scattering from a candidate

structure model. This approach is commonly used in the study

of small molecules in the gas phase (Hargittai & Hargittai,

1988). The Fourier transform of the estimated scattering

approximates RðrÞ=r, the nominal ‘experimental’ or ‘modified’

RDF. An equivalent method for obtaining the modified RDF

from wide-angle scattering alone is to add a baseline estimated

from a model structure to f ðr;QminÞ (Ruan et al., 2007). This

approach has been successful for calculating RðrÞ=r for many-

atom nanoparticles.

6. Summary

The PDF is a valuable tool for identifying the form and the

interior composition of nanoscale materials. Whereas the

oscillating component of the PDF gives information about the

interatomic distances within the material, the PDF baseline is

a function of the characteristic function, a measure of nano-

particle shape which has its origin in the SAS that is usually

disregarded in a powder-diffraction experiment. This char-

acteristic function goes unnoticed in macroscopic particles,

where the PDF is observed at distances that are much smaller

than the particle diameter. For nanoparticles, the PDF base-

line, and therefore the characteristic function, cannot be

disregarded. We have presented a full derivation of the PDF

equation taking into account the missing SAS and have

reviewed different methods for calculating the PDF for

nanoparticles. Given the relationship between the PDF and

SAS equations, there is potential benefit in incorporating SAS

data and analysis methods into PDF studies.
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